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The impact of a shock-wave on a thin two-dimensional 
aerofoil moving at supersonic speed 

By J. L. SMYRL 
Department of Mathematics, Royal College of Science and Technology, Glmgow 

(Received 15 May 1961 and in revised form 8 October 1962) 

The pressure field is found in closed analytic form for the region behind an 
arbitrary plane shock, which has encountereda thin aerofoil moving at supersonic 
speed. The solution may be used for wedges at small incidence to the air-flow 
around them, and for wedges yawed with respect to the shock plane through 
angles up to a limiting value which always exceeds 67.8". The pressure distribu- 
tion on the surface of a wedge is calculated in a number of examples illustrating 
separately the effects of shock strength, wedge speed, and angle of yaw. 

1. Introduction 
The flow resulting when a plane shock-wave meets normally a thin infinite 

wedge a t  rest relative to the surrounding air was found by Lighthill (1949). 
A solution applicable not only to wedges but to any thin symmetric aerofoil was 
given by Ludloff &, Ting (1951, 1952). Chester (1954) extended the work of 
Lighthill to include infinite wedges a t  yaw. The present paper is concerned with 
a plane shock-wave meeting a thin aerofoil which is moving in the opposite 
direction at supersonic speed; small angles of incidence are permitted and the 
aerofoil may be yawed up to a certain limit. The problem is of practical interest 
in connexion with blast effects on supersonic aircraft. 

Ehlers & Shoemaker (1959) have solved the problem of a weak shock-wave 
meeting, at any angle of incidence, a flat plate moving subsonically or super- 
sonically. In  contrast, the present problem concerns a shock-wave of arbitrary 
strength, and the supersonic aerofoil has a weak attached shock so that a collision 
between two shocks is involved. 

The solution is given first for a thin infinite wedge; the problem is linearized 
and the methods of solution based on those of Lighthill and Chester. New features 
include a contact discontinuity resulting from the shock collision, and it is shown 
that the boundary-value problem for pressure is unaffected by the presence of 
this discontinuity in the other variables. The pressure is expressed in terms of 
elementary functions, and in particular expressions are found for the pressure 
on the surface of the wedge, and along the shock, in terms of the basic co-ordinates. 
Numerical examples are given for various shock strengths, wedge speeds, and 
angles of yaw. Finally, the solutions are extended to cover the case of a thin 
aerofoil of arbitrary shape. 
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2. Wedge and normal shock 
We consider first a plane shock, the plane of which coincides a t  time t = 0 

with the (z 2)-plane, moving with velocity U in the direction of the X-axis into 
a uniform region (0 )  of still air. A thin wedge of infinite span, whose leading 
edge coincides at time t = 0 with the Z-axis and whose plane of symmetry lies 
approximately in the (X,Z)-plane, moves with supersonic velocity W in the 
direction of the negative X-axis. When t < 0 the flow pattern consists of three 
uniform regions (0 ) ,  (l), (2); regions (0) and (1) are separated by the shock, while 
regions (0)  and (2) are separated by weak bow shock-waves attached to the 
leading edge. We seek a solution to the flow problem for t > 0 and we note the 
following simplifying features: (i) the flow is independent of 2; (ii) since the flow 
is at all times supersonic relative to the wedge, the flow patterns on the two sides 
of the wedge are independent; it is therefore sufficient to find the solution for 
Y > 0; (iii) there is no fundamental length in the data defining the problem. 
We denote by p, p, V and c the respective flow variables pressure, density, flow 
velocity and sound speed; by virtue of (i) and (iii) these are functions of X / t ,  
Y/ t  only. The conservation relations across a stationary shock may be written 
in the form 

vb = V, +$(Vu. n) [{cz/(V,. n),} - 11 n, 

(2.1) i pb = g ~ ~ [ ( V u . n ) ~ - ~ ~ ~ ] ,  

P b  = @ u / [ l  + 5c~/(Vu-n)21? 

where n is the unit normal to the shock front, suffices a, b refer to values ahead 
of and behind the shock, respectively, and the adiabatic index of air is taken 
to be 1.4. 

Numerical suffices are used with any variable to denote its constant value in 
the uniform region of the same number. Thus if E (supposed small) is the angle 
between the wedge face and the (X,Z)-plane, we have (Courant & Friedrichs 
1948) 

p ,  = p o  + q o W 2  tan $,, p2 = p,[l+ c( W/C,)~ tan $,I, V, = { - sW tan $,, BW}, 

c2 = co[l +e(W2/5c;) tan$,], $, = sin-, (co/W). 

The Mach number N (  = U/c,) of the shock and the Mach number H'( = W/c,) 
of the wedge are the fundamental data defining the problem. Writing M,( = K/c,) 
for the Mach number of the uniform flow behind the shock, we find from equations 
(2.1) that 

N1 = 5 ( M 2 -  1)/[(7M2- 1) (M2+5)]3 ,  CJC, = [(7N2- 1) ( M 2 + 5 ) ] ) / 6 M .  

The main flow regions for t > 0 are indicated in figure 1. The leading edge is 
represented by the point L, I is the intersection of the shock and the bow-wave, 
and the axes are moving with the velocity V, of the flow in region (1). The presence 
of the wedge in region ( 1 )  causes a small disturbance; the limit of the spread of 
this disturbance is a circle, centre 0, radius c,t, together with the tangent LC and 
the shock front. Furthermore, some alteration in the position of the intersecting 
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shocks below I is necessary (see von Mises 1958) and we are led to make the 
following assumptions. 

(i) The shock is deflected a t  I through a small angle 6 (say) which we measure 
positive when anti-clockwise. 

(ii) The bow-wave is deflected a t  I into the position of the tangent ID, and a 
new bow-wave is formed in the position of the tangent LC. 

FIGURE 1. The main flow regions after the wedge has penetrated the shock front. 

(iii) A contact discontinuity, in the approximate position 10, divides the air 
behind the shock front into two non-mixing portions, that which crossed the 
shock front directly from region (0 )  being thus separated from that which first 
crossed the bow-wave into region (2) .  

(iv) Outside the sonic circle the flow consists only of uniform regions. In  
particular, the shock front is straight except for the portion AB which must bend 
so as to meet the wedge face normally. 

These assumptions provide the smallest and simplest disturbed region con- 
sistent with the physical facts and for which a solution can be found. Figure 2, 
plate 1, shows the analogous situation in shallow-water theory and supports 
many of the above hypotheses. 

All regions of uniform flow are denoted by numbers (see figure 1). Region (6) 
exists only when the tangents LC, ID intersect and is then a straightforward 
superposition of the disturbances in regions (3) and ( 5 )  since the intersecting 
shocks are both weak (see von Mises 1958). In  terms of the shock strength A, 
where 

it is found that LC and ID intersect unless 

M’ > 4 5 ( h -  1)/((6h-l)4-h4(6-h)*}, 
15 Fluid Mech. 16 
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but the solution procedure is unaffected. (Non-intersecting tangents in the 
first-order theory correspond, in the physical problem, to the bow-wave becoming 
concave towards the wedge.) The tangent ID vanishes completely if the point I 
falls within the sonic circle. This cannot happen for shock strengths up to h = 4 6 ,  
and thereafter only if 

M' > [h {5h(6 -h) }~+6(h-1 ) (h+1)~] / (h2-6 ) .  

Some adjustment to the solution procedure is necessary in this case (see $8) .  
Since 1 < h < 6 for all real shocks, figure 3 illustrates the range of M' and h 
corresponding to the three cases. 

h 

FIGTJRE 3. The dependence on M' and h of the proposed flow picture in figure 1. 

3. The non-uniform region 

The equations of two-dimensional unsteady rotational motion are 
Since air enters this region across a curved shock we expect rotational motion. 

(3.1) 

+/at + v . (pV) = 0, 

(a/at+v.v) (pp-1.4) = 0. 

av/at+(v.v)v = -(i/p)vp, 
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For any thin wedge the disturbed flow must be no more than a small per- 
turbation away from the uniform flow of region (1). Consequently, we think 
of E as a parameter and assume Taylor expansions of the form 

(3.2) 1 p = p1 + E$l)(X, Y ,  t )  + EZP(Z)(X, Y ,  t) + . . . , 
p = p1 + €P(l’(X, Y ,  t )  + @p(Z)(X, Y ,  t )  + . . . , 

€V(l)(X, Y ,  t) + SZV(2)(X, Y ,  t )  + . .., v = 

for the disturbed flow. Substituting from equations (3.2) into equations (3.1) 
and equating coefficients of E now gives 

where the results have been expressed in terms of non-dimensional variables 

p‘ = p‘l’ /plc;, p‘ = p(l)/pl, V’ = V(1)/C1 = {u’, v’}. 

The ‘cone-field’ property of the problem enables us to reduce the number of 
independent variables to two by setting x = X/clt, y = Y/c,t. Since p‘, p‘, V’ 
are functions of x and y only, equations (3.3) may be written as 

Elimination of u’ and v‘ from the fist three of equations (3.4) gives an equation 
for p’ only, viz. 

v p  I -  - ( x ? + y Z + l )  ax ay (xg+yg). (3.5) 

In  the (x, y)-plane the flow pattern appears ‘steady’ and figure 4 indicates its 
main features. 

The points B(xo, yo), C(xl, y,), D(z,, yz) and E lie on the circumference of the 
unit circle, centre 0, and the co-ordinates of B, C, D and I(xo, y3) are given by 

xo = (U-V,) /c ,  = {(M2+5)/(7MZ- l)}*, 

x1 = - l/(N,+c,M’/c,), 

zz = - {Y3(4 + Y: - I)* - xol/(x: + Y3, 

yi = (1-x:)* (i = 0,1,2). 

y3 = { ( W +  U)/c1)tanq5,, = [6M(M+M’) ] / [ (7M2-  1) ( M 2 + 5 ) ( M ’ a - 1 ) ] ~ ,  

15-2 
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FIGURE 4. The disturbed region in the (2, y)-plane. 

4. Boundary conditions for p‘ in the non-uniform region 
On the circular arc BCDE p’ takes constant values with discontinuities 

at C and D. We denote by pi the value ofp’ appropriate to the uniform region (i) 
and, where required, a similar suffix notation is used with p’, u‘, v’. We must have 
p; = pi and (see Courant & Friedrichs 1948) 

P; = {(COlCl) M‘ + ~l )2 / [~(co/c l )  M‘ + - lit. 
If region (6) exists we have p; = pi +p; so that only pi need now be determined. 

To establish the conditions a t  the shock front, we take the position of the 
shock front to be given by the equation 

x = XO + $(y) + O(E2), 

where f(y) is as yet unknown. The shock equations (2.1) now give, after some 
simplification, that 

These equations imply that 

where 

at x = xo, 
u’ = Ap’ + const., 

av’iay = B aptlay, 

M 2 + 1  7M2-1 4 3(M2 - 1) 
A = - ( - ) ,  2 M 2  M 2 + 5  B =  M 2 + 5  ‘ 

Finally, from the first two of equations (3.4) and from equations (4.2) we deduce 
that 
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This is a differential condition for p' and may be supplemented by the require- 
ment that 

The results (4.1) may be used on the portion BI of the shock front by setting 

4 - zY3( ( i2) 5M2(M+M') 1 
f (y) = ( y3 - y) S/e. This gives 

5M'-  MtM2-2M'2M 
u'--5 1 + -  S/s+--------------- 

V: = MI 81s + (co/cl) M', I (4.5) 

10MM'+5M2M'2- MI2 
10(M+ M') 

In  the case of the weak shock ID, the shock equations (2.1) reduce to 

4 = XZPh, vh = Y 2 P k  (4.6) 

and the condition for no flow across the contact discontinuity between regions 
(3) and (4) is that 

y3u; - xo v; = y3u; - xo v;. (4.7) 

Conditions in regions (3) and (4) are completely determined by the linear equa- 
tions (44, (4.6) and (4.7). In  particular p; is determined, and we may also find 
the ratio ale of shock deflexion to wedge angle. 

Along EA the flow must be parallel to the wedge face. This requires 

V' = Ml + (co/cl) M' 

when y = 0 so that, using the third of equations (3.4), we get 

ap'lay = 0 when y = 0. (4.8) 

5. The boundary-value problem in the Busemann plane 
So far no account has been taken of the contact discontinuity in the non- 

uniform region. Let ( r ,  8) be polar co-ordinates in the (5, y)-plane of figure 4 so 
that the approximate position of the contact discontinuity is 

8 = tan-l (y3/zo) = 8*, 

say. The second and third of equations (3.4) may now be written as 

r a q a r  = api/ax, r avi/ar = ap'py, (5.1) 

and the transverse velocity component v; ( = v' cos 8 - u' sin 0 )  is seen to satisfy 
the equation 

av;/ar = ( l / r 2 )  ap'lae. (5.2) 

In  terms of p', the conditions that pressure and normal flow velocity be con- 
tinuous across the contact discontinuity would be that p' and ap'la8 are con- 
tinuous at 8 = 8". For 0 < 8 < e*, 0 < r 6 1 and for 8" < 8 < T, 0 < r < 1, 
p' satisfies the differential equation (3.5) which becomes, in polar co-ordinates, 
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From the continuity of p' across the radius 8 = 8" we deduce the continuity of 
ap'lar and a2p'/ar2 across 8 = 8". Hence equation (5.3) shows that 

so that a2p'/lW2 is continuous and equation (5.3) is satisfied across 0 = 8". In  
other words the contact discontinuity does not appear as far as the boundary- 
value problem for p' is concerned. 

Busemann (1943) has shown that, inside the unit circle, the transformation 
P = (l/r) [l- (1 - r2)$] reduces equation (5.3) to the equation 

which is Laplace's equation in polar co-ordinates F, 8. 

(5.4) 

FIGURE 5. The non-uniform region in the (T, (?)-plane. 

Figure 5 shows the non-uniform region in the ( F ,  @-plane. The arc BCDE of 
the unit circle is unchanged and the Cartesian co-ordinates of all points thereon 
are unchanged. The shock front AB becomes an arc of the circle 2Fcos 8 = xo( 1 + r2) 
on which, by (4.3) (see Lighthill 1949), 

apn,  2/88 being differentiations normal and tangential to the arc respectively. 
Condition (4.8) may be written as 

api/ae = o when e = T ,  (5.6) 

in which form it is unchanged by the transformation. 

6. Solution by complex-variable method 
Write z = reie, zo = xo+iyo. We define a new complex variable f( = E +  iq) by 

Figure 5 represents the complex z-plane and under the conformal mapping (6.1) 
the boundary ABCDEA of the non-uniform region becomes the entire real axis 
7 = 0 in the <-plane. 
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We now introduce a function w(C) defined by 

= apt jar + i apt jag, 

so that, by (5.4), w ( 5 )  is analytic throughout the upper half-plane. Since 

we have p’ = Im ( / w ( c )  dg} + const. (6.2) 

The circular arc BCDE becomes the portion 
corresponding respectively to the points (gl, 0 ) ,  (E2, 0) where 

-= - 1 of the real axis, with C, D 

The conditions on the circular arc thus become equivalent to the condition that 
w ( 5 )  is real for = 0, 5 < - 1 together with 

a t  5 = 51, 
P; 1 w ( 5 )  N 

7r 5-51 

The wedge face EA corresponds to the portion of the real axis where - 1 < 5 < 1. 
Here we require that w(6) be imaginary. 

The shock front AB corresponds to the portion 5 > 1 of the real axis, and by 
(5.5) (see Lighthill 1949) we have here 

where 

The required function is given by 

with suitable constants K,, K,,  K3. Taking (c2- 1)* to mean the branch which 
is positive on the real axis for 5 > 1, the conditions (6.3) and (6.4) give 

K2 = ~ - 1 P ; ~ Y l + ~ ~ - 5 1 ~ ~ l ~ ~ z + ~ ~ - 5 1 ~ * l ~ 5 ~ - ~ ~ ~ ~  

Kl = -~-1PaYl+(1-52)*l [Yz+(1-52)*1(W- 114. 

From equations (6.1) we find that, corresponding to the shock front, i.e. 7 = 0, 
5 > 1, we have 

C - l ? ?  
Y = Yo(m) - 
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Hence equation (4.4) gives 
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2 '  2 
c5 = 7Tp5, c, = --p' 

7T 3' 

It is found that W(5) is purely real when 7 = 0, - 1 < 5 < 1, and that W ( [ )  + 0 
as 5 -+ - 1. It follows from equation (6.2) that 

p' = pk - Re W(5) 

and the solution is now complete. 

simplifies to 

and the substitution 5 = 1 - 2{(x0 - z)/( 1 - x,x)>~ gives p' in terms of the 'conical ' 
co-ordinate x. 

The behaviour of p' on the wedge face is of special importance. Here the result 

p' =pL-W([)  (-1 < ( <  1) 

by the substitution x = t2 and elementary integration. The constant K3 is thus 
determined and equation (6 .5)  gives w ( 5 )  uniquely. 

It can be shown by ordinary integration methods that 
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Points immediately behind the shock front correspond to q = 0, [ > 1. Here 
we may write 

and show that 

p' = p i -  in(c5 + (76) 

while [ = (yi+y2)/(yi-y2). This last result enables us to determine the shock 
position. Writing P(y) = f(y) -yf'(y) we know F(y) in terms of p' from the last 
of equations (4. l), and the relation 

f(9) = - y p m d Y  (6.7) 

enables us to evaluate f (y) since f (yo) is known. 

7. The nature of the contact discontinuity 
Once p' is known, equation (5.1) may be used to find u' and w' by evaluation 

of integrals along radial lines in the (2, y)-plane, starting from the known values 
a t  the boundary. For points at the contact discontinuity 6 = 6*, the boundary 
value is chosen in region (3) or region (4) depending on which side the point lies. 
Thus a genuine discontinuity in u', w' exists at 6 = 6* but the discontinuity is 
of constant amount all along the line. The last of equations (3.4), which can be 
written as ap'/ar = ap'/ar, shows that a similar discontinuity exists in p'. 

8. Shock intersection inside sonic circle 
Figure 6 is the revised form of figure 4 when y3 < yo. Regions (3) and (4) have 

now disappeared; below B the shock is curved and has discontinuous slope a t  the 

q / I  // 

L 0 + A  
FIGURE 6. Disturbed region in (z,,y)-plane when I is inside the sonic circle. 

point I which is now regarded as the point of intersection of three shocks and a 
contact discontinuity. We suppose the tangents to the shock a t  I make angles 
8, (upper portion) and 8, (lower portion) with the y-axis. 

Equations (4.1), omitting terms containing M' and setting 
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are used to find the limiting values of a’, v’, p’ as we approach I along the upper 
portion of the shock. To find the limiting values of u’, v’, p’ as we approach I 
along the lower portion of the shock we use equations (4.1) with 

f ( Y )  = f(Y3) + ( 9 3  - Y) s,/.. 
The limiting values of p’ must agree while those of ZL‘ and 2)’ must satisfy the 
relation (4.7). Thus the jump Sv‘ (say) in d a t  I as we cross the contact dis- 
continuity from the lower to the upper portion of the shock can be calculated in 
terms off (y3). Allowance must be made for this discontinuity in v’ by subtracting 
B-lSv’ from the right-hand side of equation (4.4); we have in addition vi = 0 and 
p ;  = 0. Finally, since f(y3) is unknown, we must proceed to equation (6.7) 
before the solution is complete even for p’ .  

9. The yawed wedge 
The description of the problem in $ 2  may be altered in some details for the 

case of a thin wedge at yaw meeting a plane shock-wave. Figure 7 shows the 
( X ,  8)-plane, in which the leading edge of the wedge is moving with supersonic 

i 
z-axis 

FIGURE 7. The ( X ,  2)-plane. 

velocity W ,  and we again assume the plane of symmetry of the wedge to lie 
approximately in this plane. The shock front has velocity U and makes an 
angle p with the leading edge. The point 0 where the leading edge intersects the 
shock front may be brought to rest by superimposing on the entire system a 
velocity V, whose magnitude V, is cosec p( U2 + W 2  + 2 U W cos p)i and whose 
direction makes an angle p’ = sin-l (U/V,) with the shock front; the flow is then 
steady, and the three-dimensional nature of the problem is offset by the sup- 
pression of the time variable. 

The uniform flow behind the shock now has velocity V; = V, + V,; thedirection 
of V; makes an angle p with the shock front where 

tanp  = (U-V,)sinp/(W+ Ucosp) 



Impact of a shock-wave on a thin aerofoil at supersonic speed 235 

and its magnitude is given by 

It can be shown that V; > c1 if p < pl + /Iz or ~3 > 7r - p1 + p2, where 

V;2 = (U-‘&)Z+{(W+ Ucosp)/sin,8}2. 

46  M 2  , p2 = tan-1 p1 = sin-l ( ( 7 M ~ ~ ~ ~ ~ 5 ) *  (cMz- l ) h  ( M 2 +  5)* 

This means that for any fixed wedge speed the point ( M ,  /?) must lie to the left 
of the appropriate curve as illustrated in figure 8. (The common asymptote is 
p = tan-l1/6 = 6 7 - 8 O . )  

FIGURE 8. The range of /3 for which the flow behind the shock is supersonic. 

The subsequent treatment relies on supersonic flow behind the shock so we 
shall assume p lies within the required range and furthermore that /3 < &r. The 
point 0 is taken as origin with the Z-axis in the direction of V;, and the Mach 
cone with semi-angle a, where sin a = cl/ Vi = c1 sin,u/( U - K), is drawn on this 
axis with 0 as vertex. The region of non-uniform flow is bounded below by the 
wedge face, ahead by the shock-front, and elsewhere by the Mach cone. (We 
again consider the flow above the wedge only since the flow above and below are 
independent.) The tangent plane from the leading edge of the wedge to the Mach 
cone is a weak shock-front; between this and the cone is a uniform region (5) 
in which the flow is parallel to the wedge face. A similar weak shock front is 
attached t o  the portion of the leading edge which lies ahead of the advancing 
shock; i t  makes an angle q50 with the ( X ,  2)-plane (cot q50 = (W2- 1)*)  and 
separates the region (2) of uniform flow parallel to the wedge face from the main 
region (0) ahead of the shock. Across this shock, equations ( 2 . 1 )  give 

p2 = p o [ l + ~ M ’ 2 / ( M ’ 2 - 1 ) * ] ,  p a  = P ~ [ ~ + C ~ M ’ ~ / ~ ( M ‘ ~ -  l)*], V, = Vo-cWk, 

where k is a unit vector in the direction [tan q50, - 1, tan $o tan (p -p)]. 
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The weak shock between regions (0)and (2)meets the main shock along a line 1 
through the origin. The tangent plane from 1 on to the Mach cone is another weak 
shock-front, and the plane containing 1 and the Z-axis is the approximate position 
of a contact discontinuity surface; between the weak shock, the Mach cone, and 
the main shock are two uniform regions (3) and (4) separated by the contact 
discontinuity. 

Within the region of non-uniform flow we use the equations of steady rotational 
three-dimensional flow, i.e. the equations (3.1) omitting time derivatives. We 
further assume 

(9.1) 1 p = p ,  + € p y x ,  r, 2) + s 2 p q x ,  r, 2) + . . . , 
p = p1 + €p‘”(X, Y, 2) + s2p(2)(X, r, 2)  + . . . , 
v = v; + €V(l)(X,  y, 2) + €2V@)(X, y, 2) + . . . . 

The lack of a fundamental length scale in the problem suggests that the flow 
variables are functions of the two independent variables x, y defined by 

Dimensionless variables may be defined as before; we write 

From the equations of motion we may now reproduce the equations (3.4) 
together with the additional equation 

x = X / Z  tan a, y = Y / Z  tan a. 

p’ = pa) /pic:, p’ = p(l)/pl, V’ = ( l/cl) V(1) = (u’ cos a, u’ cos a, - w’ sin a>. 

awl awl aul avl 
x 7 & + y q = - + - .  ax ay 

Figure 4 may be used to represent the configuration in the (x, y)-plane; the 
following amendments to the co-ordinates of the important points are all that 
is necessary: 

tanp  + tan (/3 -p)  
tan a 

6M cos a (M cos /3+ M‘) 
cos2pcos2(~-p)[(7M2- I )  (M2+5) ( J T 2 -  1)]4’ 

tan$, = 

1 

[((c,/c,) M‘ + M, cos PI2 cos2 (/3 - p) + sin2 (/3 - p)].i * 

Y3 = 

x1 = - 

The solution procedure outlined for the case of a normal shock may now be 
followed exactly; the revised form of the main results used is given below, where 
all the formulae are expressed in a form which indicates clearly the limit as 
/3 -+ 0. We have 

pk = {(~o/~l)M’+Mlco~/3}2/{[(~o/~l)  M’+M,cos/~]~- I}*. 
The equations (4.1) become 

(M2+M’2+2MM‘cos,8)) 1 
M’ + M cosp 

(8 secp - cos/3) M’ - x M Y )  - Yf’(Y)l + 
cosp co M’ 

5 M  

21‘ = -M1f‘(y)-+-- 
cosa clcOsa’ 
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from which, in equations (4.2), we have 

7 M 2  - 1 4 M 2  cos (p’ +,a) + cos (p’ -,u) 3(M2- 1) 
, B =  M2 + 5 see2 A =  ~ ( M 2 + 5 )  2M2cos& cosp’ 

The alterations to equations (4.5) follow immediately from those to equations 
(4.1). The right-hand side of equation (4.4) is replaced by 

(1/B) [v~-{M,cosp+ (co/cl) M’}seca], 

while equations (4.6) should read 

I I 1  I 
U3 COSU = XZp3, V 3 C O S U  = y21)3. 

No alteration in form is necessary to equation (4.7). 

10. Numerical results 
The pressure distribution on the wedge face has been calculated in a number 

of cases and the results are illustrated by figures 9, 10 and 11 which demonstrate, 

E A 

FIGURE 9. The pressure distribution on the portion EA of the wedge 
face when /I = 0, M’ = 2 with various values of M .  

respectively, the effect of shock strength, wedge speed, and yaw. Only the 
portion EA of the wedge face, on which pressure is non-constant, is shown and 
the scale is adjusted to make the distance EA the same in all cases. 



11. Aerofoil of arbitrary shape 
The methods used so far are limited to infinite wedges. Consider now a multiple 

wedge with n faces and corresponding directional changes ei (i = 1,2, . . . , n), all 
small (see figure 12). 

I I I I I I I 

E A 

FIUURE 10. The pressure distribution along EA when /3 = 0, M = 2 with various values 
of M'. The corresponding results with M increased to 4 are given by the broken curves. 

We write, in place of (3.2), 
9l 

p =PI+ 2 eiip'1*qX,Y,t)+..., 
i= l  

since ei are independent parameters. Moreover, setting ei = 0 (i +j) we see 
that p(l*$) can be identified in terms of the function p(l) associated with the single 
wedge; using moving axes as in 5 2, we have 



Impact of a shock-wave on a thin aerofoil at supersonic speed 239 

Thus the functions p(lJ  correspond to disturbances differing only in space and 
time origins. If any of ei are negative the corresponding single wedge solution 
is still applicable; in that case the weak attached shocks are interpreted as weak 
expansion waves. 

2.0 

P' 

1 .o I I I I I I I 

E A 

FIGURE 11. The pressure distribution along EA when M' = 2 ,  M = 2 with B = 0, 0-5, 
1-25, 1.5 radians respectively. The corresponding results with M increased to 4 are given 
by the broken curves. 

For an aerofoil of arbitrary profile, let s denote distance from the leading edge 
in the direction of the X-axis and let the upper surface of the aerofoil have 
equation Y = $(s) where $(s) is uniformly small. By a simple limiting process 

The variable region of non-zero p(l) which is encountered in the integrand makes 
it convenient to express p in another form. Writing 

we know that p(1) is, for all, X ,  t and s, a function of x and y only; we denote 
this function by p(Q(x, y). Eliminating s between equations (1 1. l), we find that 
the path of integration in the (x, y)-plane is the atraight line 

yp(z-x , , )+~(xo-xp)  = 0, where x, = X/c, t ,  yp = Y/cl t .  
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the pressure at a point P with co-ordinates (xp, yp) we evaluate 
The situation can now be referred to the (2, y)-plane of figure 4 where, to find 

(11.2) 

where integration is along the straight line PQ. (PQ passes through A, and Q is 
the point where it meets the boundary separating the disturbance region from 
region (l).) For points on the surface of the aerofoil we have straightforward 
integrations along the x-axis. 

FIGURE 12. Shock-wave meeting multiple wedge. 

The solution for an infinite wedge at  yaw can similarly be extended. We find 

(11.3) 

where p(l) refers to the wedge at yaw as in 9 9, and integration is again along the 
line PQ in figure 4. Remembering that the axes used in 0 9 move differently from 
those used for the normal shock, we can easily verify that the limit of (1 1.3) as 
/3 -+ 0 is (11.2). In  a similar manner the other flow variables and the position of 
the shock front can be calculated from the wedge solution. 

The author wishes to express his gratitude to Prof. D. C. Pack who first intro- 
duced him to this problem and whose unfailing interest in the progress of the 
work was a great source of encouragement. He is also indebted to the referee 
for suggesting the extension of the work to yawed wedges. 
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FIGURE 2.  Bore meeting wedge in super-critical flow in shallow water tank. Photograph 
taken by E. J. Klein in the Hydraulics Laboratory, The Royal College of Science and 
Technology, Glasgow. 
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